РФЯЦ-ВНИИТФ, г. Снежинск

29 мая – 2 июня 2023 г.

Забабахинские Научные Чтения 2023

EQUATION OF STATE AND TRANSPORT PROPERTIES OF REFRACTORY METALS IN THE SUPERCRITICAL FLUID STATE

Shumikhin A.S.

Joint Institute for High Temperatures of RAS, Russia, Moscow

Motivation

EXPERIMENT

The static experiment – alkali metals and mercury ($T_m \sim 300$ K, $T_{cr} \sim 2000$ K)

The low-melting metals \rightarrow T_m~ 600 K, T_{cr} ~ 5000 ÷ 10000 K

Pulse-heating \rightarrow Pottlacher (Pb)

Shock-compression \rightarrow Nikolaev et al (Pb)

The refractory metals $\rightarrow T_m \sim 3000$ K, $T_{cr} > 10000$ K

Pulse-heating \rightarrow Pottlacher (Co, Mo, Nb, Ta, Re), Seydel (Mo, Ta, W etc.), DeSilva (Ta, W)

Shock-compression \rightarrow Nikolaev et al (Mo)

THEORETICAL

- 1. Kuhlbrodt S., Holst B., Redmer R. Contrib. Plasma Phys. 45, 73 (2005)
- Fu Z. et al. Phys. Scr. 85, 045502 (2012); High Energy Density Phys. 9, 781 (2013) Fe, Ni, W
- 3. Apfelbaum E.M., Vorob'ev V.S. J Phys Chem B 120, 4828 (2016)
- 4. Apfelbaum E.M. Contrib. Plasma Phys. 57, 479 (2017); Phys. Plasma 24, 052702 (2017) Ta, Mo

A.L. Khomkin and A.S. Shumikhin, High Temp. **50**, 307 (2012)

MODELLING

- Levashov P.R. et al. Phys. Rev. B 97, 024205 (2018); Phys. Rev. B 103, 184204 (2021) – W, Mo
- 2. Miljacic L. et al. CALPHAD **51**, 133 (2015) Ta
- 3. French M. Phys. Rev. B 90, 165113 (2014) Mo
- 4. Elkin V.M. et al. J. Phys.: Condens. Matter **32**, 435403 (2020) Pt
- 5. Fu Z. et al. Phys. Plasmas **24**, 013303 (2017) Al

NEW CHEMICAL MODEL OF DENSE PLASMA

ATOMS + JELLIUM ELECTRONS IONS

New hypothesis

Atom immersed in the electron jellium at any density!!!

Electron jellium

Isolated atom occupies the entire space The atom surrounded by its kind only a restricted volume defined by the size of the Wigner-Seitz cell «Excessive» electron density formed jellium

The electron jellium exist at any density!

An atom always immersed in jellium! Jellium – new electron component Jellium density does not depend on temperature.

Degree of "Cold Ionization" – HFS approximation

$$n_e = \alpha_{HF} n_0 \qquad \qquad \alpha_{HF} = \sum_i \alpha_{HF}^i$$

$$\alpha_{HF}^{i} = \int_{y_{a}}^{\infty} |\Psi_{i}(\boldsymbol{r})|^{2} r^{2} dr + \frac{y_{a}^{3}}{3} \Psi_{i}(y_{a})^{2} \qquad \Psi(\mathbf{r}) = \sum_{\lambda,p} C_{\lambda,p} \chi_{\lambda,p}(\boldsymbol{r},\boldsymbol{\theta},\boldsymbol{\varphi}).$$

$$\chi_{\lambda p}(r,\theta,\phi) = R_{\lambda p}(r)Y_{\lambda p}(\theta,\varphi),$$

где

$$R_{\lambda p}(r) = \left[(2n_{\lambda p})! \right]^{-1/2} (2\zeta_{\lambda p})^{n_{\lambda p} + 1/2} \times r^{n_{\lambda p} - 1} e^{-\zeta_{\lambda p} r}.$$

E. Clementi and C. Roetti, Atomic Data and Nuclear Data Tables 14, 177 (1974)

"3+" model Helmholtz Free Energy

$$F = F_a + F_{ch}$$

$$F_a = -N_a kT ln\left(\frac{eVg_a \Sigma_a}{N_a \lambda_a^3}\right) + N_a kT \frac{4\eta - 3\eta^2}{(1 - \eta)^2} + \frac{1}{2}N_a E_{coh}(y)$$

$$F_{ch} = -N_e kT ln \left(\frac{eVg_e}{N_e \lambda_e^3}\right) - N_i kT ln \left(\frac{eVg_i}{N_i \lambda_i^3}\right) - (N_e + N_i) \Delta f_{ei}$$

$$\beta \mu_a = -\ln \frac{Vg_a}{N_a \lambda_a^3} + \frac{8\eta - 9\eta^2 + 3\eta^3}{(1 - \eta)^3} - \frac{\beta E_{coh}}{2} \left(1 - \frac{y_a}{3 E_{coh}} \frac{\partial E_{coh}}{\partial y_a} \right)$$

$$\beta \mu_{e,i} = -ln \frac{Vg_{e,i}}{N_{e,i}\lambda_{e,i}^3} - \frac{2Ry}{y_i}$$

$$\frac{1-\alpha}{\alpha^2} = n \lambda_e^3 \frac{g_a}{2g_i} \exp\left(\beta I - \frac{2\beta Ry}{y_i} - \frac{\beta E_{coh}}{2} \left(1 - \frac{y_a}{3 E_{coh}} \frac{\partial E_{coh}}{\partial y_a}\right) - \frac{8\eta - 9\eta^2 + 3\eta^3}{(1-\eta)^3}$$

$$N_{e} = N_{i}$$

$$N_{i} + N_{a} = N$$

$$n_{e} = n_{i} = n\alpha(n, T)$$

$$n_{a} = n(1 - \alpha(n, T))$$

$$n_{j} = n_{a} \alpha_{j}(n_{a})$$

$$P = -\partial F / \partial V$$

$$F = \partial \beta F / \partial \beta$$

$$P(T; E)$$

$$P(T; E)$$

$$\sigma(n_{e}, n_{j})$$

$$\sigma = \sigma_t + \sigma_j$$

$$\sigma_{t} = \frac{4\alpha n e^{2} \beta^{5/2}}{3\sqrt{2\pi m_{e}}} \frac{1}{9 \cdot 10^{11}} \times \\ \times \int_{0}^{\infty} \frac{\exp(-\beta\varepsilon)\varepsilon^{3/2} d\varepsilon}{\sqrt{\varepsilon} \left[(1-\alpha)nQ_{ea}(\varepsilon) + \alpha n\gamma_{e}^{-1}Q_{ei}(\varepsilon,\Gamma)\right]}.$$

$$\sigma_j = n_j \frac{e^2}{m_e} \tau. \qquad \frac{\tau}{m_e} = \frac{2R_a}{p_F},$$

THERMOPHYSICAL PROPERTIES

Binodal of molybdenum

QMD – Minakov D.V., Paramonov M.A., Levashov P.R. Phys. Rev. B **103**, 184204 (202) VCM – Khomkin A.L., Shumikhin A.S. High Temp. **52**:3, 328 (2014)

TRANSPORT PROPERTIES

COMPTRA – S. Kuhlbrodt, B. Holst and R. Redmer, Contrib. Plasma Phys. 45, 73 (2005)
Experiment – A.W. DeSilva and A.D. Rakhel, Contrib. Plasma Phys. 45, 236 (2005)
A. Kloss, T. Motzke, R. Grossjohann, H. Hess, Phys. Rev. E 54, 5851 (1996).

QMD – French M., Mattsson T.R. Phys. Rev. B **90**, 165113 (2014) VCM – Khomkin A.L., Shumikhin A.S. High Temp. **52**:3, 328 (2014)

QMD – French M., Mattsson T.R. Phys. Rev. B **90**, 165113 (2014) Experiment – Pottlacher G. et al. J. Phys.: Condens. Matter **3**, 5783 (1991)

QMD – French M., Mattsson T.R. Phys. Rev. B 90, 165113 (2014)

выводы

- Предложенная "3+" модель позволяет в рамках единого подхода рассчитать состав, уравнение состояния и электропроводность для сверхкритического флюида металлов, включая тугоплавкие. Отличительной особенностью модели является использование твердотельных характеристик для описания свойств СКФ: когезионная энергия связи атомов и электронное желе – зачаток зоны проводимости.
- 2. При сжатии происходит изменение физической природы ионизации:
 - от термической к холодной;
 - от термических электронов к электронам желе.
- 3. Предложенная "3+" модель уравнения состояния может служить исходными данными для более точных расчётов в рамках численных методов.

THANK YOU FOR YOUR ATTENTION!

MAIN PAPERS

- 1. Хомкин А.Л., Шумихин А.С. Критические точки паров металлов // ЖЭТФ 2015. Т. 148. с. 597.
- 2. Хомкин А.Л., Шумихин А.С. Проводимость паров металлов в критической точке // ЖЭТФ 2016. Т. 150. с. 1020.
- 3. Хомкин А.Л., Шумихин А.С. Переход от газокинетической к минимальной металлической проводимости в сверхкритическом флюиде паров металлов // ЖЭТФ 2017. Т. 151. с. 1169.
- 4. Хомкин А.Л., Шумихин А.С. Особенности расчёта уравнения состояния, состава и проводимости плотных, закритических паров металлов плазменного флюида // ЖЭТФ 2017. Т. 152. с. 1393.

 Хомкин А.Л., Шумихин А.С. Газообразный металл и проблема перехода паржидкость (диэлектрик-металл) в парах металлов // ЖЭТФ 2020. Т. 157. с. 717.
 Хомкин А.Л., Шумихин А.С. Сверхкритический флюид плазмы паров металлов, инертных газов и экситонов // УФН 2021. Т. 191, № 11. с. 1187.
 Khomkin A.L., Shumikhin A.S. Is the atomic metal vapor a dielectric state? // Phys. Scr. 2021. Vol. 96. 035806.