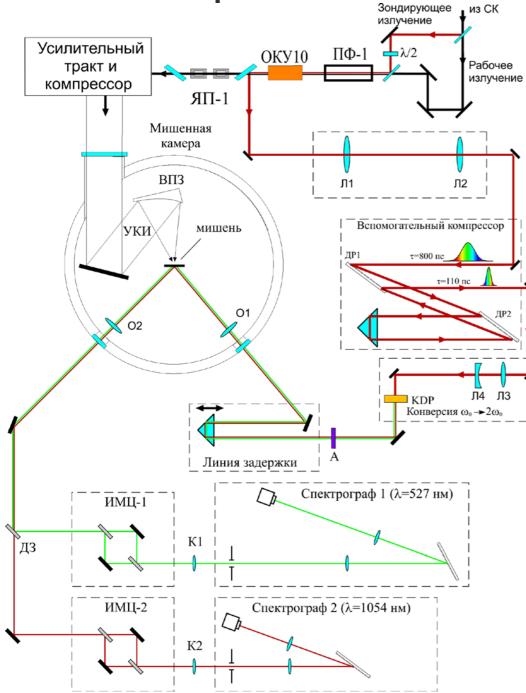


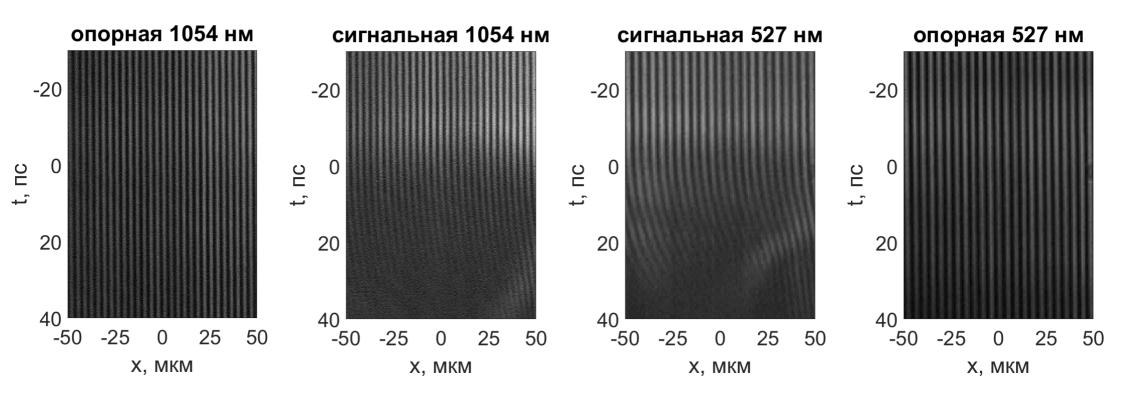
ЭКСПЕРИМЕНТАЛЬНЫЕ ИССЛЕДОВАНИЯ СКОРОСТИ РАЗЛЕТА ВЕЩЕСТВА ПРИ ИЗОХОРИЧЕСКОМ НАГРЕВЕ ПЛОСКИХ МИШЕНЕЙ УЛЬТРАКОРОТКИМ ЛАЗЕРНЫМ ИМПУЛЬСОМ


30.05.2023

XVI Забабахинские научные чтения

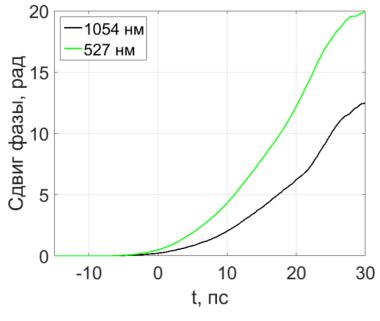
Борисов Егор Сергеевич, Гаврилов Д.С., Титаренко Н.Ю.

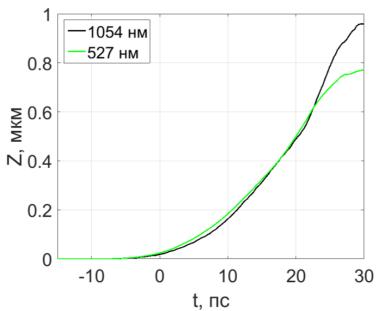
Схема эксперимента

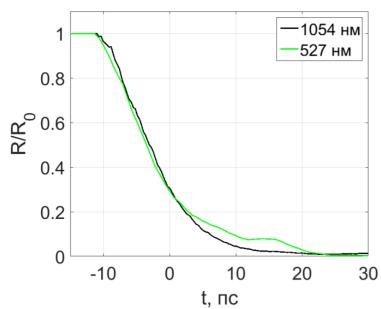


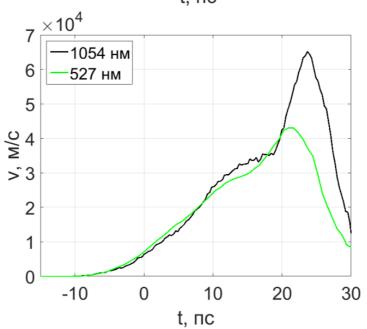
Длительность греющего лазерного импульса, пс	0,9
Энергия греющего лазерного импульса, Дж	10,6 – 12,8
Длительность зондирующего лазерного импульса, пс	110
Временное разрешение метода, пс	10
Пространственное разрешение в канале ω_0 , мкм	10,7
Пространственное разрешение в канале 2ω ₀ , мкм	6,9

Эксперименты с мишенями 10 мкм



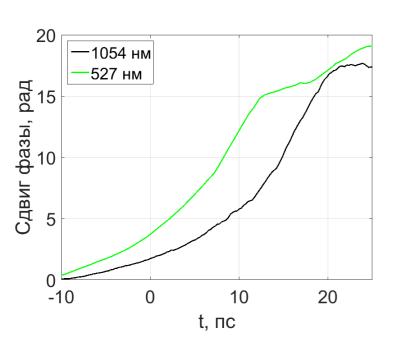


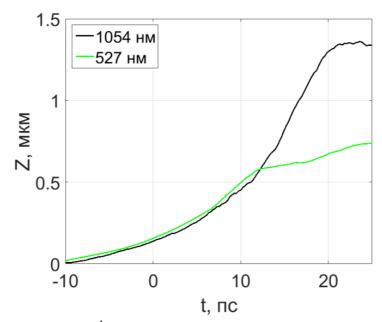

Параметры эксперимента	Значение
Энергия лазерного импульса на мишени, Дж	12,4
Интенсивность лазерного импульса на мишени, Вт/см²	2·10 ¹⁸


Эксперименты с мишенями 10 мкм

Максимальная скорость 65 км/с для 1054 нм и 43 км/с для 527 нм

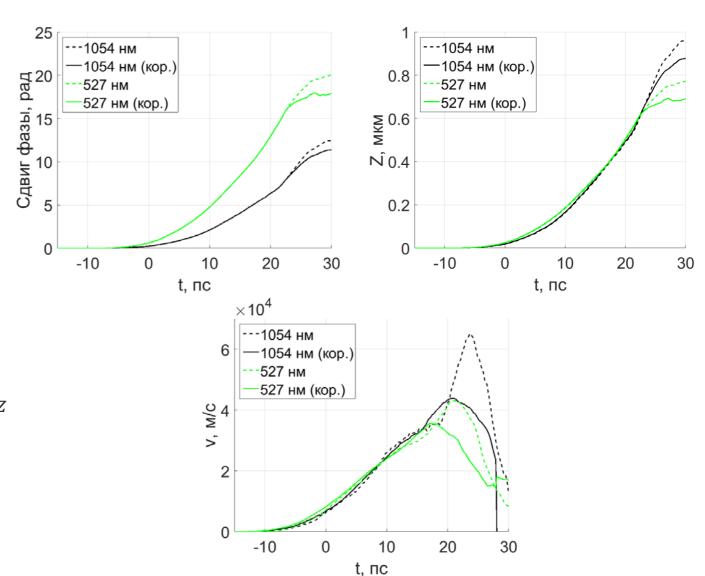
Эксперименты с мишенями 5 мкм





Параметры эксперимента	Значение
Энергия лазерного импульса на мишени, Дж	10,85
Интенсивность лазерного импульса на мишени, Вт/см²	1,75·10 ¹⁸

Эксперименты с мишенями 5 мкм


Максимальная скорость 104 км/с для 1054 нм и 46 км/с для 527 нм

Корректировка временных зависимостей

$$\begin{split} N_e(z) &= N_{e(2\omega_0)} e^{-\beta(z-z_{2\omega_0})} \\ \beta &= \ln 4 \cdot \left(z_{\omega_0} - z_{2\omega_0}\right)^{-1} \\ \omega_p(z) &= \sqrt{\frac{4\pi e^2}{m}} N_e(z) \\ n(z) &= \sqrt{1 - \frac{\omega_p(z)^2}{\omega_i^2}} \\ \Delta L_{\text{ORT}}(z) &= \frac{2}{\cos \alpha} \int_{-\infty}^{\infty} [1 - n(z)] dz \end{split}$$

 $\Delta\varphi(z) = \frac{2\pi}{\lambda} \Delta L_{\text{опт}}(z)$

Заключение

- На пикосекундной лазерной установке при интенсивности нагружающего импульса до 2⋅10¹⁸ Вт/см² проведена серия экспериментов по изохорическому разогреву медных мишеней толщинами 5 и 10 мкм с использованием диагностики параметров свободной поверхности мишени методом спектральной интерферометрии чирпированным импульсом длительностью 110 пс на двух длинах волн.
- Максимальная скорость поверхности критической плотности для $\lambda = 1054$ нм составила 65 км/с, для $\lambda = 527$ нм 43 км/с при толщине мишени 10 мкм
- Максимальная скорость поверхности критической плотности для $\lambda = 1054$ нм составила 104 км/с, для $\lambda = 527$ нм 46 км/с при толщине мишени 5 мкм
- Выполнена оценка влияния эффекта прохождения зондирующих пучков в слое докритической плазмы на результаты полученных динамических характеристик. Для мишени толщиной 10 мкм в предположении экспоненциального профиля плотности плазмы произведен расчёт дополнительного набега фазы излучения и получено снижение максимальной скорости поверхностей критической плотности на 30% и 17% для зондирующих пучков с длинами волн 1054 нм и 527 нм соответственно.

Спасибо за внимание

Борисов Егор Сергеевич