ДЕТОНАЦИОННЫЙ СИНТЕЗ НАНОЧАСТИЦ ПАЛЛАДИЯ И ПРИМЕНЕНИЕ ИХ В ЗАДАЧАХ КАТАЛИЗА

А.О. Кашкаров, Е.Ю. Герасимов, Б.Л. Мороз, Д.А. Булушев, Э.Р. Прууэл, Н.А. Хлебановский

Институт гидродинамики им. М.А. Лаврентьева СО РАН, Новосибирск Институт катализа им. Г.К. Борескова СО РАН, Новосибирск Новосибирский государственный университет

Введение

Исследование возможности использования энергии взрыва для синтеза катализаторов на примере наночастиц Pd, нанесённых на углеродный носитель в виде конденсированных продуктов детонации.

Особенности и возможности метода:

- Синтез углеродного носителя, активных частиц и нанесение их на носитель происходит в одну стадию во время взрыва
- > Управление распределением по размерам наночастиц
- > Нестандартный носитель
- ▶ Возможность масштабирования на большие объёмы

Метод детонационного синтеза катализаторов

Прекурсоры: • $Pd(NO_3)_2$ • $Pd(CH_3COO)_2$ • $Pd(C_7H_{15}COO)_2$ • $Pd(C_{17}H_{35}COO)_2$ • $Pd(OBz)_2$ Взрывчатое вещество: •ТАТБ/октоген 50/50

- Осаждение прекурсора из раствора на поверхность ТАТБ выпариванием (~3% масс.)
- Добавление октогена для увеличения
 чувствительности и снижения критического диаметра
- Изготовление прессованных зарядов Ø20 мм
- ≻ Проведение взрыва

Этапы изготовления катализатора

Морфология носителя

Удельная площадь поверхности S=350÷500 м²/г (Сибунит 350÷650 м²/г)

Средний размер пор 9÷10 нм

Micromeritics ASAP 2400 instrument

Содержание азота в носителе

Разложение спектра N1s для образца без добавок Pd (РФЭС) На основе стеарата Pd: • 11.29% N

На основе каприлата Pd:

• 11.10% N

На основе ацетата Pd:

• 12.69% N

На основе нитрата Pd:

• 12.52% N

Без добавок с Pd:

• 13.17% N

EURO EA 3000 automated CHNS analyzer

Содержание палладия в катализаторах

Разложение спектра Pd3d для образца на основе каприлата Pd (РФЭС) На основе стеарата Рd:

• 0.66% Pd

На основе каприлата Pd:

• 1.93% Pd

На основе ацетата Pd:

• 4.70% Pd

На основе нитрата Pd:

• 3.68% Pd

Во всех образцах содержание примесного Fe менее 0.5%

ARL PERFORM'X spectrometer (Rh anode, operated at 50 kV, 40 mA)

Электронная микроскопия

На основе нитрата Pd

На основе бензоата Рd

Распределения наночастиц Pd по размерам

Кривые конверсии в реакции разложения муравьиной кислоты

Муравьиная кислота содержит большое количество водорода, а потому удобна для его транспортировки и хранения

Скорость реакции разложения муравьиной кислоты

Сводная таблица каталитической активности

Катализатор	Рd прекурсор	Содержание Pd, wt%	Средний размер, nm (TEM)	Селективность на 50% конверсии, %	Ea, kJ mol ⁻¹
Дет. углерод	-	0	-	95.4	111
Pd/Сибунит	Pd Ацетилацетонат	1.0	2.3	93.4	46
Рd/Дет. углерод	Pd Ацетилацетонат	1.93	2.2	98.0	35
Дет. синтез	Pd стеарат	0.66	1.5	99.3	47
Дет. синтез	Pd каприлат	1.93	2.5	99.0	36
Дет. синтез	Pd ацетат	4.70	3.1	98.5	35
Дет. синтез	Pd нитрат	3.68	6.4	99.4	46

Выводы

Показана практическая возможность применения метода детонационного синтеза катализаторов на примере Pd/C

Метод позволяет варьировать средние размеры наночастиц Pd изменением природы прекурсоров и их загрузкой

Полученные катализаторы демонстрируют высокую активность и селективность в реакции разложения муравьиной кислоты

Повышенная активность в этой реакции, по сравнению со стандартным катализатором, обусловлена высоким содержанием азота в носителе, получаемом при детонационном синтезе