

ОСОБЕННОСТИ РАСПРОСТРАНЕНИЯ ДЕТОНАЦИИ В КАНАЛАХ МАЛОГО СЕЧЕНИЯ ДЛЯ СОСТАВА НА ОСНОВЕ ТЭН

Ширшова Мария Олеговна (0830),

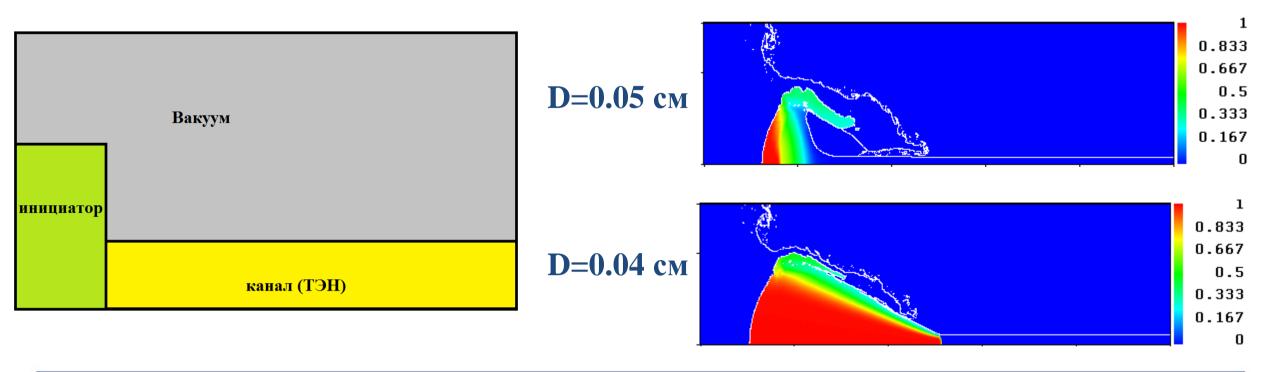
Титова В. Б. (6408), Володина Н. А. (0830).

Оценка работоспособности систем инициирования

√TЭH

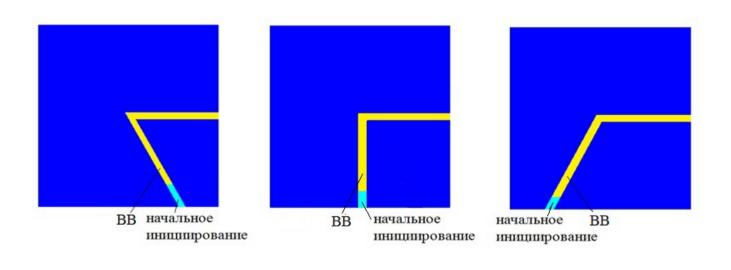
для ВВ - УРС Ми-Грюназена;

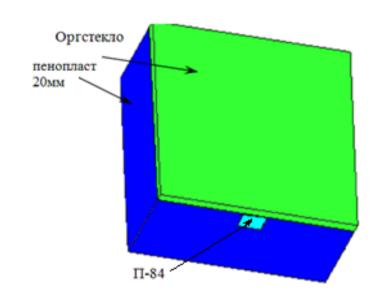
для ПВ - УРС в форме Зубарева.


✓Для экспериментов использовался электроннооптический комплекс, основой которого является высокоскоростная камера НАНОГЕЙТ 22.

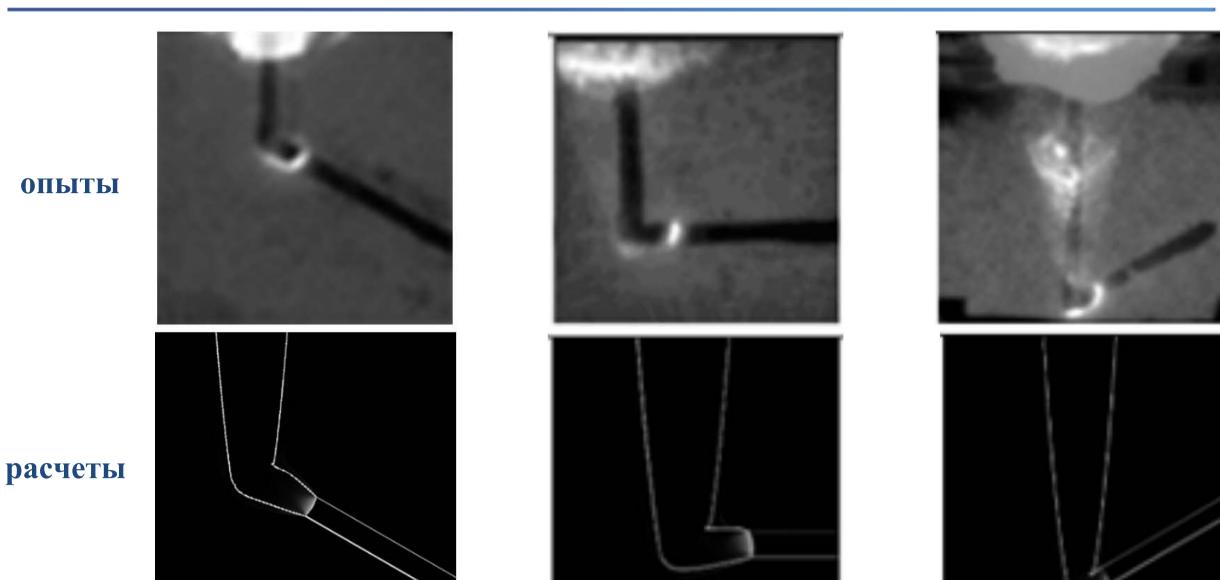
✓ Расчётное моделирование проводилось по методике ЛЭГАК с учетом кинетики детонации МК.

Оценка критического диаметра каналов




Экспериментальное значение критического диаметра составляет 0.02-0.04 см.

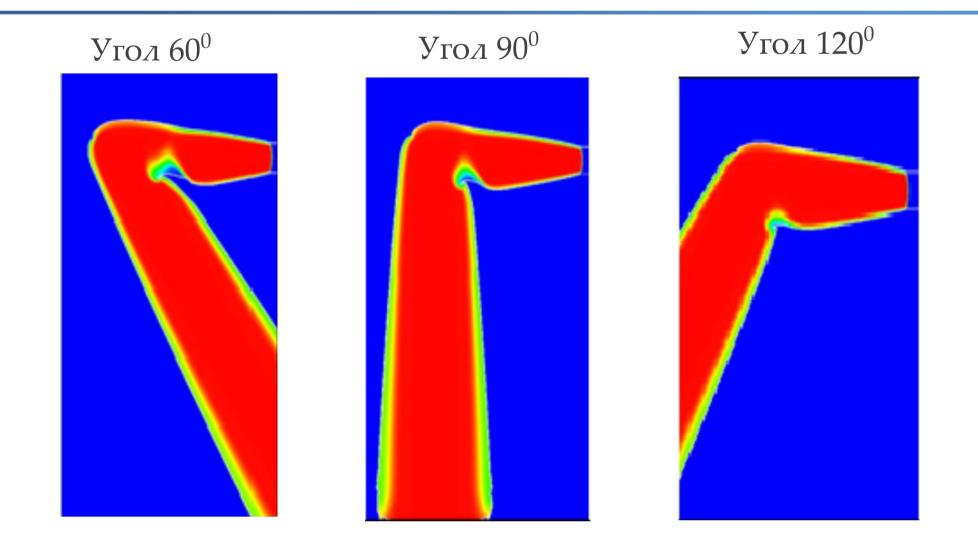
Влияние сечения и угла поворота канала



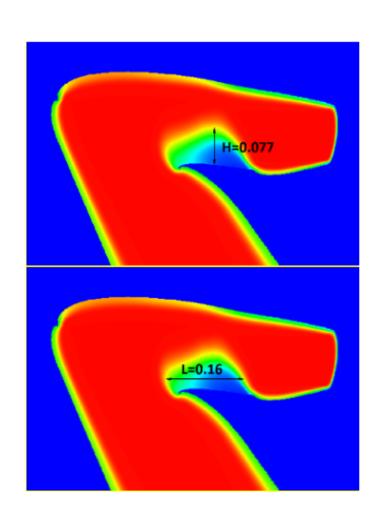
Форма сечения	1.2x1.0, mm ²	1.5x1.2, mm ²	1.5x1.5, mm ²
Угол поворота прутка, град	60	90	120

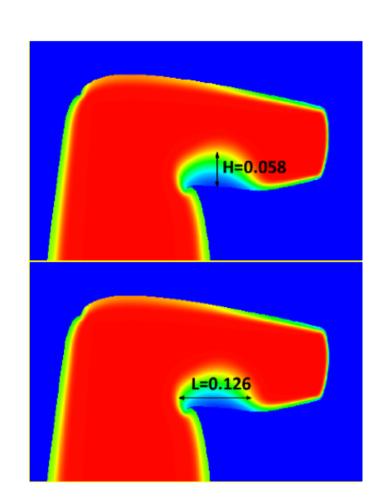
Расчеты проводились на кубической эйлеровой сетке 0.002 см

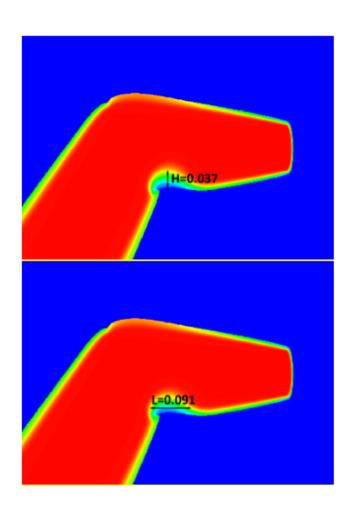
Распространение детонации в каналах сечения 1.2х1.0мм2


Распространение детонации по каналу с углом поворота 60

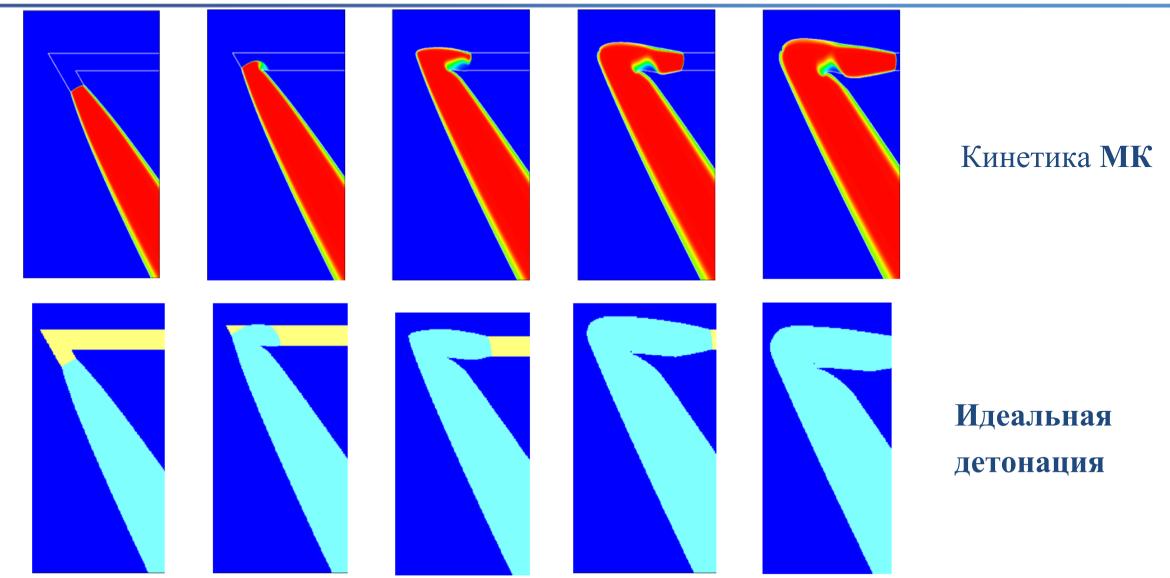
 $1.5x1.2 \text{ mm}^2$ $1.2x1 \text{ mm}^2$ $1.5x1.5mm^2$


Распространение детонации в каналах сечения 1.2x1.0мм²





Распространение детонации в каналах сечения 1.2x1.0мм²


Оценка размеров «теневой зоны» при прохождении ДВ по каналам разных сечений

Сечение канала	Угол поворота	Н,см (ширина)	L, см (длина)
	60	0.031	0.15
1.5 [×] 1.5мм ²	90	0.04	0.088
	120	0.032	0.078
	60	0.049	0.15
1.5 [×] 1.2 _{MM} ²	90	0.047	0.105
	120	0.0325	0.085
	60	0.077	0.16
1.2 [×] 1мм ²	90	0.058	0.126

Поле выгорания ВВ в каналах с углом поворота 60^{0} градусов при сечении канала 1.2*1 мм²

Заключение

В работе представлены особенности распространения детонации по каналам малого сечения, снаряженных пластифицированным ВВ на основе ТЭН. Приведены экспериментальные и расчётные данные. Выполнен расчётно-теоретический анализ особенностей распространения детонации по каналам малого сечения:

- ✓ получена характерная картина распространения детонации при огибании детонационной волной «теневой» зоны;
- ✓ оценен размер области «теневой» зоны после прохождения детонационной волны поворота прутка.

Применение кинетики детонации в дальнейшем для численного моделирования распространения детонации в более сложных системах даст возможность расчетной оптимизации инициирующих систем и уменьшения экспериментальной отработки.

СПАСИБО ЗА ВНИМАНИЕ!

Литература

- 1. Е. В. Халдеев, А. В. Бессонова, Д. А. Пронин, Ю. М. Сустаева, О. В. Шевлягин. Распространение детонации на углах поворота в каналах малого сечения. Физика горения и взрыва. 2018. Т.54, №5. С. 1-6.
- 2. С.М. Бахрах, Н.А. Володина, М.О. Зайцева, И.И. Карпенко, А.Д. Ковтун, В.А. Комрачков, Ю.М. Макаров, В.Г. Морозов, Л.А. Рябчун Экспериментальное и численное исследование развития процесса детонации ВВ типа ТАТБ // Вопросы атомной науки и техники. Сер. Математическое моделирование физических процессов. 2005. Вып. 1, С. 41-56.
- 3. В.Г. Морозов, И.И. Карпенко, С.Е. Куратов, С.С. Соколов, Б.Н. Шамраев, Л.В. Дмитриева, "Теоретическое обоснование феноменологической модели ударноволновой чувствительности ВВ на основе ТАТБ". "Химическая физика", том 14, N 2-3, 1995.
- 4. Н.А. Володина, С.А. Краюхин. Алгоритм итерационной коррекции времн детонации за счет направления движения детонационной волны в методике ЛЭГАК // Вопросы атомной науки и техники. Сер. Математическое моделирование физических процессов. 2019. Вып. 3. С.35-47.
- 5. И.И.Карпенко, Н.В.Корепова. Численное моделирование критического диаметра стационарной детонации конденсированных взрывчатых веществ.// Химическая физика. 2005. Т. 24, №10. С.31-37.
- 6. Забабахин Е.И. Некоторые вопросы газодинамики взрыва. М.: Снежинск, 1997, 203 с.
- 7. Зубарев В.Н., Евстигнеев А.А. Уравнения состояния продуктов взрыва конденсированных ВВ // Физика горения и взрыва. -1984. -Т.20, №6. -С. 114-126.
- 8. Электронно-оптическая восьмиканальная камера НАНОГЕЙТ-222. Руководство по эксплуатации. М., 2012.