Стендовый доклад на XVI Международной конференции «Забабахинские научные чтения» (29 мая - 02 июня 2023 г., Снежинск, Челябинская обл., Россия)

Моделирование развития гидродинамических неустойчивостей и перемешивания в лазерных мишенях прямого облучения по комплексам ТИГР-3Т и ОМЕГА-3Т

Д.В. Дембовский, В.А. Лыков, Л.В. Соколов, Д.В. Химич, А.Н. Шушлебин

e-mail: <u>v.a.lykov@vniitf.ru</u>

РФЯЦ-ВНИИТФ им. академика Е.И. Забабахина, Снежинск, Россия

Аннотация

Представлены результаты расчётов, произведённых по двумерным программным комплексам ТИГР-3Т и ОМЕГА-3Т с использованием двумерной полуэмпирической *кє*-модели турбулентного перемешивания для изучения влияния гидродинамических неустойчивостей и турбулентного перемешивания на сжатие и термоядерное горение одно- и двухкаскадной конструкций мишеней прямого облучения для мегаджоульных лазерных установок. Согласно ранее проведённым расчётам однокаскадной мишени длинноволновые возмущения с номерами гармоник *l*~4-12 и амплитудой *A*~1% в асимметрии поглощённой лазерной энергии не приводят к сильному снижению выхода термоядерной энергии. Для данной мишени чрезвычайно опасными оказываются коротковолновые возмущения: 60-я гармоника с амплитудой А~0,1% или возмущения, заданные в начальный момент времени на границе топлива и аблятора всего с амплитудой $\delta \sim 10^{-6}$ см, которые приводят к снижению выхода термоядерной энергии в 2-3 раза. При этом дополнительный учет турбулентного перемешивания уменьшает вероятность зажигания мишени. При сжатии двухкаскадных мишеней происходит эффективное сглаживание возмущений в процессе их передачи от внешнего каскада на внутренний. В результате для возмущений в асимметрии поглощённой лазерной энергии опасными оказываются длинноволновые возмущения с 12-ой гармоникой и амплитудой А~1%, которые также приводят к снижению выхода термоядерной энергии в 2-3 раза. Для таких мишеней важно правильно описывать процессы развития неустойчивостей и перемешивания на границах внутреннего каскада, выполненного из материала с высоким Z. Показано, что развитие коротковолновых возмущений, проводящее к турбулентному перемешиванию является существенным препятствием на пути достижения термоядерного зажигания DT-топлива как в одно-, так и двухкаскадных мишенях инерциального термоядерного синтеза.

Введение

В экспериментах с однокаскадными мишенями, проведенными на установке NIF по схеме непрямого облучения, получен выход термоядерной энергии $E_{TR} \approx 1,3$ МДж при энергии лазера $E_L \approx 1,9$ МДж [1]. Возможность термоядерного зажигания мишеней прямого облучения на мегаджоульных лазерных установках еще предстоит выяснить. Основными трудностями на этом пути являются развитие гидродинамических неустойчивостей [2] и вызванные ими процессы турбулентного перемешивания [3].

Целью проведения двумерных расчетов по программным комплексам ТИГР-3Т [4-6] и OMEГА-3Т [4-5] явилось изучение влияния гидродинамических неустойчивостей и обусловленного ими турбулентного перемешивания на сжатие и термоядерное горение одно- и двухкаскадных мишеней прямого облучения для мегаджоульных лазерных установок.

Программный комплекс ТИГР-3Т позволяет моделировать сжатие ИТС-мишеней в приближении трехтемпературном газодинамическом [7] С использованием метода концентраций [8] при больших деформациях, а ОМЕГА-3Т – процессы термоядерного горения с учетом кинетики термоядерных реакций, переноса энергии альфа-частицами и нейтронов DTреакции в многогрупповом двумерном кинетическом приближении [9, 10]. В расчетах усовершенствованная полуэмпирическая *кє*-модель применялась турбулентного перемешивания [11], по которой впервые проведены двумерные численные эксперименты с мишенями, тогда как при прямом численном моделировании перемешивания требуются огромные вычислительные ресурсы из-за конечноразностных сеток.

1. Постановка задачи

Расчёты проводились в трёхтемпературном газодинамическом приближении с учётом электронной и ионной теплопроводностей, а также переноса энергии фотонами в диффузионном приближении с ограничением потоков и $k\varepsilon$ -модели турбулентного перемешивания. В расчётах использовались уравнения состояния веществ в форме, предложенной в [12], и пробеги излучения, рассчитанные по программе RESEOS [13]. Электронная теплопроводность ограничивалась предельным потоком $q_e^{nped} = f_e n_e T_e^{\frac{3}{2}}$ с коэффициентом $f_e \approx 0.15$.

Моделирование поглощения лазерного излучения осуществлялось заданием источника нагрева электронов в области плазмы с плотностью, близкой к критической $\rho_c(z/cM^3) = 1,66 \cdot 10^{-3} \lambda^{-2} < A > / < Z >$, где < Z > u < A > - средний заряд и масса ионов плазмы, а λ (мкм) – длина волны лазерного излучения. А именно, на каждый момент t для каждого азимутального угла θ_i в сферической системе координат определяются граничные радиусы $R_{1,2}(t,\theta_i)$ интервала, в котором плотность плазмы отвечает неравенству $0,5\rho_c < \rho(r,\theta) < \rho_c$, а в уравнении энергии для электронов задается удельная мощность источника энергии согласно формуле:

$$\frac{d^{2}E(t,r,\vartheta)}{dtdm} = P_{L}(t) \frac{\left[1 + A_{l}\cos(l\vartheta)\right]}{M_{c}(t)},$$
(1)
где: $M_{c}(t) = 2\pi \sum_{i=1}^{i=l} \frac{\vartheta_{i+1/2}}{\vartheta_{i-1/2}} \left[1 + A_{l}\cos(l\vartheta)\right] \sin(\vartheta) d\vartheta \begin{vmatrix} R_{1}(t,\vartheta_{l}) \\ S_{2}(t,\vartheta_{l}) \end{vmatrix} \rho(r,\vartheta_{l}) r^{2} dr \end{vmatrix}$ - нормировка лазерного

источника на массу точек, в которых задается энерговыделение; A_l – амплитуда возмущений с

номером гармоники *l*; $P_L(t) = E_a \cdot f(t) / \int_0^\infty f(t) dt$ - мощность, E_a – поглощенная мишенью

энергия лазерного излучения; f(t) – форма лазерного импульса.

Однокаскадная мишень.

В качестве однокаскадной мишени рассматривалась мишень, предложенная в работе [14]. Для этой мишени опубликованы результаты двумерных расчетов [15-16], которые были по программе NUTCY [17-18] с целью изучения влияния на сжатие и термоядерное горение этой мишени длинноволновых возмущений, обусловленных дисбалансом в мощности пучков [15], промахами в их наведении на мишень [15] и разновременностью сведения пучков в центр мишенной камеры [16].

На рисунке 1 приведена начальная геометрия однокаскадной системы, в таблице 1 представлена форма лазерного импульса, бралось $\rho_c = 0.012$ г/см³.

Область	1	2	3	4	5	6	
R, мкм	0	1414	1421	1563	1586	1596	1597
Вещество	DT	DT	DT	Be	Be	Be	
Плотность, г/см ³	0,0006	0,25	0,25	1,05	1,05	1,05	

Рисунок 1 – Схема однокаскадной мишени прямого облучения

	*					U	
$1ab\pi u a 1 - $	Форма	лазерного	импульса	лля	олнокас	калнои	мишени
ruomiqu r	+ opmu	Jusephoro	minighted	A	oppinonae	maganon	winning chini.

	-	-									
t(нс)	0,0	0,2	3,0	4,0	5,0	5,5	5,75	6,0	9,0	9,1	20
<i>f</i> (t)	0,0	6,0	6,0	0,12	40	98	235	400	400	0	0

Двухкаскадная мишень.

В качестве двухкаскадной мишени рассматривалась мишень, предложенная в работе [19]. Для этой мишени опубликованы результаты одномерных [19-20] и двумерных расчетов [19, 21]. Согласно этим расчетам при сжатии двухкаскадных мишеней происходит эффективное сглаживание возмущений в процессе их передачи от внешнего каскада на внутренний. В результате для возмущений в асимметрии поглощённой лазерной энергии опасными оказываются длинноволновые возмущения с 12-ой гармоникой и амплитудой *A*~1%, которые приводят к снижению выхода термоядерной энергии в 2-3 раза. Для таких мишеней важно также правильно описывать процессы развития коротковолновых возмущений и перемешивания на границах внутреннего каскада, выполненного из материала с высоким Z.

На рисунке 2 приведена начальная геометрия двухкаскадной системы, в таблице 2 представлена форма лазерного импульса, бралось $\rho_c = 0.0132 \text{ г/см}^3$.

Область		1		2		3		4		5		6		7
R _i (мкм)	0		325		330		370		390		1585		1615	1655
Вещество	Γ	ЭT		Be		Au		Be		CH		Be	Е	Be
ρ (г/см ³)	0	,2		1,8		19,6		1,8		0,03		1,8	1	,8
Рисунок 2-	- Схема	дву	хкаск	адной	і миш	ени п	рямог	г <mark>о об</mark> л	іучені	łЯ				

	<u> </u>						
Гарлин	a 2-000	пма пазе	пного и	мпульса у	7 ΠRV	укаскалнои	мишени
таолиц	u 2 Ŧ0	pina nase	photo m	willy sidea y	дру	маскадной	winimerini.

t(нс)	0,0	0,2	0,4	1,6	1,8	3,0	3,3	8,5	8,8	20
<i>f</i> (t)	0,0	300	0,0	0,0	150	150	300	300	0	0

2. Результаты расчетов однокаскадной мишени

В одномерных расчетах однокаскадной конструкции мишени [14], проведенным по двумерным программным комплексам ТИГР-3Т и ОМЕГА-3Т выход термоядерной энергии составил $E_{TR} \approx 41,4$ МДж при вложенной в мишень энергии лазерного излучения E_a =1,5 МДж с длиной волны λ =0,53 мкм (вариант 1 в таблице 3 и 4).

В таблице 3 перечислены варианты проведенных расчетов с описанием исходных данных, которые соответствуют строкам таблицы 4. В таблице 4 и на рисунках 3-5 представлены результаты двумерных расчетов мишени [14].

Гидродинамическая неустойчивость и турбулентное перемешивание развиваются в окрестности границы между DT слоем и оболочкой с внутренним радиусом (R_{30} =1563мкм), что имеет место при сжатии и торможении неиспаренной массы аблятора. В расчетах варианты 2 и 5 таблицы 3 на указанной границе задавалось гармоническое возмущение в геометрии поверхности оболочки следующего вида: $R_3(9) = R_{30} + \delta_0 \cos(l9)$, где *l*-номер гармоники возмущений по углу (9_i) с амплитудой (δ_0).

В расчетах варианты 3-5 и 7 из таблиц 3 и 4, проведенных с учетом $k\varepsilon$ -модели турбулентного перемешивания [11], на границе R_{30} задавались: l-номер гармоники возмущений, амплитуда возмущения (a_0) и длина волны (λ_0), определяемая выражением $\lambda_0 = 2\pi R_{30} / l$. Переход к расчету турбулентного перемешивания осуществлялся в момент времени ($t \approx 9 \ hc$), когда достигалось условие, что отношение амплитуды возмущения к длине волны $a(t)/\lambda(t) \approx 1$. Так в расчете (вариант 2 таблиц 3, 4) для 60-ой гармоники рост амплитуды границы $\delta(t)$ способствовал переходу к использованию метода концентраций, что принималось за начало турбулентного перемешивания. По состоянию мишени сформировались исходные турбулентные параметры для расчетов с учетом $k\varepsilon$ -модели. Для варианта 2 из таблицы 4 снижение термоядерного выхода к одномерному без возмущений составило N_{2D}/N_{1D} =78%.

Расчет термоядерного энерговыделения по комплексу ОМЕГА-3Т начинался с разреза ТИГР-3Т в момент, когда T_i =1кэВ в центральной области с DT-газом. Курсивом выделены слои, в которые проникает материал оболочки из Ве в расчетах на неустойчивость и перемешивание. Так результаты двумерных расчетов варианты 2 и 5 таблица 4 показывают, как влияют на термоядерное горение возмущения в геометрии изготовления оболочки и турбулентное перемешивания по отдельности по отношению к сферически-симметричному сжатию, а также при совместном учете этих двух факторов.

В одномерных расчетах варианты 3 и 4 таблица 4 с учетом турбулентного перемешивания, в которых варьировалась амплитуда начальных возмущений a_0 на границе R_{30} =1563мкм, получено снижение термоядерного выхода до уровня N_{2D}/N_{1D} =91% и N_{2D}/N_{1D} =94% при a_0 = 0,1637мкм и a_0 = 10⁻² мкм соответственно.

Результаты расчетов варианты 6 и 7 таблица 4 показывают, как влияют на термоядерное горение возмущения 60-ой гармоники с амплитудой $A_l = 0,1\%$ в поглощенном потоке без учета (вариант 6) и с учетом (вариант 7) турбулентного перемешивания. В вариантах 6 и 7 снижение термоядерного выхода составило $N_{2D}/N_{1D} = 63\%$ и $N_{2D}/N_{1D} = 15\%$ соответственно. Результаты проведенных расчетов при совместном учете гидродинамических неустойчивостей и турбулентного перемешивания указывают, что вероятность зажигания мишени существенно уменьшается.

На рисунке 3 показано состояния мишени на момент максимума ионной температуры DT в расчете (вариант 5 таблица 4) по комплексу ТИГР-3Т, где видно, что первые два слоя мишени еще не перемешаны. На рисунке 4 показано состояния мишени при максимальном сжатия DT в расчете (вариант 5 таблица 4) по комплексу ОМЕГА-3T, когда в центре идет активное термоядерное горение и образовалась зона с высокой температурой, что способствует заглаживанию возмущений в плотности и ионной температуре. Так в вариантах 2, 4 и 5 таблица 4 снижение термоядерного выхода N_{2D}/N_{1D} составило 78%, 94% и 67% соответственно.

В расчете (вариант 7 таблица 4) с возмущением в поглощенном потоке учет турбулентного перемешивания вводился в момент *t*=8,5нс, когда был переход на метод концентраций в расчете (вариант 6). На рисунке 5 показаны состояния мишени на момент максимума ионной температуры DT в расчете (вариант 7 таблица 4) по ТИГР-3T, видно только часть первого слоя DT в мишени еще не замешана. Мишень в этом случае не загорелась, поэтому двумерные распределения функций в мишени для варианта 7 в расчете по ОМЕГА-3T не приведены, т.к. они практически повторяют полученные распределения по ТИГР-3T.

3. Результаты расчетов двухкаскадной мишени

Результаты расчетов двухкаскадной конструкции мишени в таблице 5 проведены в одномерной постановке по программным комплексам ТИГР-3Т и ОМЕГА-3Т с учетом $k\varepsilon$ -модели турбулентного перемешивания. При вложенной в мишень энергии лазерного излучения E_a =1,8 МДж с длиной волны λ =0,53 мкм выход термоядерной мишени без перемешивания составил $E_{T_{\rm TR}} \approx$ 4,84 МДж.

В расчетах с учетом *kє*-модели инициализация турбулентного перемешивания вводилась нижней (*R*=330мкм) и верхней (*R*=370мкм) границах слоев из Au и Be, где задавались *l*=60 – номер гармоники возмущений и амплитуда возмущения *a*₀ длина волны λ_0 . Оценивалось развитие роста возмущений при гравитационной неустойчивости (Рэлея – Тейлора) и когда отношение амплитуды возмущения к длине волны *a*(*t*)// λ (*t*) \approx 2 и включался расчет турбулентного перемешивания.

В расчете №2 таблица 5 переход к расчету перемешивания произошел в момент времени (t=9,81нс) на нижней границе слоя из Au, тогда как на верхней границе указанные условия одновременно не были выполнены. В расчете №3 таблица 5 переход к расчету перемешивания произошел сначала в момент времени (t= 9,34 нс) на верней границе слоя из Au, а затем при реализации условий перемешивание включилось на верхней границе слоя в момент времени (t= 9,81нс). Видно, что с увеличением амплитуды возмущения на границах слоя из Au, имеет место уменьшение энерговыделения мишени. Так в расчетах (варианты 2 и 3 таблица 5) получено снижение термоядерного выхода до уровня N_{2D}/N_{1D} =64% и N_{2D}/N_{1D}=34% при a_0/λ =1% и a_0/λ =5% соответственно. Это указывает, что для коротковолновых возмущений увеличение начальной амплитуды возмущения приводит к снижению термоядерного выхода из мишени при учете турбулентного перемешивания, т.е. начальные возмущения в *кє*-модели не забываются.

В таблице 6 приведено сравнение для двухкаскадной мишени одномерного расчета и расчета с возмущением в поглощенном потоке лазерной энергии на l = 12 гармонике с амплитудой возмущения по азимутальному углу $A_l = 0,1\%$. На рисунке 6 показаны состояния мишени на момент времени (9,94 нс) при достижении максимальной температуры в DT из расчета ТИГР-3T и момент времени (9,89 нс) максимального сжатия DT из расчета ОМЕГА-3T. Сложные двумерные течения веществ указывают, что при образовании струй возникает сдвиговая неустойчивость на ряду с гравитационной. Получено снижение

термоядерного выхода до уровня N_{2D}/N_{1D} =60%. Видно, что длинноволновые возмущения на 12 гармонике в лазерном потоке энергии дают значительное снижение в термоядерной энергии мишени. Следует отметить, что не проводился учет влияния турбулентного перемешивания, которое вызывается действием коротковолновых возмущений. При взаимном влиянии на термоядерное горение мишени гидродинамических неустойчивостей и турбулентного перемешивания возможны еще большие потери в энергии.

Двумерных расчеты двухкаскадной мишени с учетом *kє*-модели турбулентного перемешивания в настоящее время проводятся по программам ТИГР-3Т и ОМЕГА-3Т и результаты этих расчетов будут представлены после их завершения и анализа.

Заключение

По двумерным программным комплексам ТИГР-3Т [4-6] и ОМЕГА-3Т [4-5] с использованием двумерной полуэмпирической *kє*-модели турбулентного перемешивания [11] проведены расчеты сжатия и горения одно- и двухкаскадной мишеней прямого облучения для мегаджоульных лазерных установок. Показано, что развитие коротковолновых возмущений, проводящее к турбулентному перемешиванию, является опасным препятствием на пути достижения термоядерного зажигания мишеней ИТС.

Литература

- 1. A. L. Kritcher, A. B. Zylstra, D. A. Callahan, et al., Phys. Rev. E (2022) 106, 025201.
- 2. R. S. Craxton, et al., Phys.Plasmas (2015) 22, 110501.
- 3. В.А.Лыков, В.А.Мурашкина, В.Е.Неуважаев, Л.И.Шибаршов, В.Г.Яковлев, Влияние турбулентного перемешивания на сжатие оболочечных мишеней Письма в ЖЭТФ, т. 30, в.6, 1979, стр. 339-342.
- 4. Е.Н. Аврорин, Н.Г. Карлыханов, М.Ю. Козманов, В.А. Лыков, К.А. Мустафин, В.Е. Неуважаев, Л.В. Соколов, В.Д. Фролов, В.Е. Черняков, А.Н. Шушлебин. Обзор теоретических работ по ИТС, проведенных в РФЯЦ-ВНИИТФ. В сб. Вопросы современной технической физики. Избранные труды РФЯЦ-ВНИИТФ, стр. 252-276. РФЯЦ-ВНИИТФ, Снежинск, 2002.
- 5. А.Н. Шушлебин, К.А. Мустафин, В.А. Лыков, В.Д. Фролов, Р.Т. Дылдина, И.А. Кузнеченкова, Е.Л. Лягина, В.Р. Надточий, С.Я. Сенников, К.И. Смирнова, Л.В. Соколов, Г.Л. Язовских, Двумерные расчеты сжатия и горения мишеней для ЛТС с непрямым воздействием по комплексам программ ТИГР-3Т и ОМЕГА-3Т//Труды Международной конференции «V Забабахинские научные чтения», 21-25 сентября 1998, Снежинск, Часть 1, стр., Снежинск, 1999.
- 6. Бисярин А.Ю., Грибов В.М., Зубов А.Д., Первиненко Н.В., Неуважаев В.Е., Фролов В.Д. Комплекс ТИГР для расчета двумерных задач математической физики// ВАНТ (серия Математическое моделирование физических процессов), вып. 3 (17), 34 (1984).
- 7. Шушлебин А.Н., Фролов В.Д., Лыков В.А. //Вычислительные технологии т. 4, No 13, Новосибирск, стр.336-345, (1995).
- 8. Шушлебин А.Н., Дылдина Р.Т., Кузнеченкова И.А. и др. Расчеты с учетом больших деформаций термоядерных мишеней непрямого облучения для лазерной установки ИСКРА// Доклад на конференции «IX Забабахинские научные чтения», Снежинск, Россия, 2007.
- 9. Аврорин Е.Н., Бунатян А.А., Гаджиев А.Д., Мустафин К.А., Нурбаков А.Ш., Писарев В.Н., Феоктистов Л.П., Фролов В.Д., Шибаршов Л.И.// Физика плазмы, 10, вып. 3 (1984).
- 10. А.Д. Гаджиев, О.С. Широковская// Журнал. Выч. Мат. и Математической физики,6, 1605-1609 (1976).
- 11. М.И. Авраменко, О ке-модели турбулентного перемешивания. Издательство РФЯЦ-ВНИИТФ, Снежинск, 2010.
- 12. Г.М. Елисеев, Г.Е. Клинишов. Уравнение состояния твёрдых веществ и его сплайнаппроксимация //ИПМ им. М.В. Келдыша АН СССР, препринт №173, М. 1982.
- 13.(16)A.A. Ovechkin, P.A. Loboda, V.G. Novikov, A.S. Grushin, A.D. Solomyannaya. RESEOS a model of thermodynamic and optical properties of hot and warm dense matter// HEDP 13, 20 33 (2014).
- 14. С. А. Бельков, С. В. Бондаренко, Г. А. Вергунова и др.// ЖЭТФ 148, 784 (2015)
- 15. С. А. Бельков, С. В. Бондаренко, Г. А. Вергунова и др.// ЖЭТФ 151, 396 (2017).
- 16. С. А. Бельков, С. В. Бондаренко, Г. А. Вергунова и др.//ЖЭТФ, 154, 629–640 (2018)
- 17. В. Ф. Тишкин, В. В. Никишин, И. В. Попов, А. П. Фаворский, Матем. моделирование 7(5), 15 (1995).
- 18. И. Г. Лебо, В. Ф. Тишкин, Исследование гидродинамической неустойчивости в задачах лазерного термоядерного синтеза методами математического моделирования, Физматлит, Москва (2006).
- 19. S. X. Hu, R. Epstein, W. Theobald, et al., Direct-drive double-shell implosion: A platform for burning-plasma physics studies// Phys.Rev. E 100, 063204 (2019).

- 20. В.А. Лыков, Е.С. Андреев, Е.С. Бакуркина, Н.Г. Карлыханов, Г.Н. Рыкованов, и В.Е. Черняков, Одномерные расчеты двухкаскадной мишени прямого облучения для мегаджоульных установок с длиной волны лазерного излучения 0,35 мкм и 0,53 мкм. Забабахиские научные чтения: сборник материалов XV Международной конференции 27 сентября -1 октября 2021. – Снежинск: Издательство РФЯЦ-ВНИИТФ, 2021. стр.94.
- 21.Д.В. Дембовский, В.А. Лыков, Л.В. Соколов и А.Н. Шушлебин, Расчеты сжатия и термоядерного горения двухкаскадной мишени прямого облучения для мегаджоульной установки по двумерным программным комплексам ТИГР-3Т И ОМЕГА-3Т. Стендовый доклад на XV-ой Международной конференции «Забабахинские научные чтения» (27 сентября -1 октября 2021г., Снежинск, Челябинская обл., Россия). Сборник аннотаций, стр.94.

Таблица З.Постановка расчётов однокаскадной мишени по комплексам ТИГР-ЗТ и ОМЕГА-ЗТ______

N⁰	
вариант	Описание
а	
1	Одномерный расчёт без возмущений
2	Двумерный расчет при возмущении в геометрии границы (<i>R</i> ₃₀ =1563мкм): • гармоника <i>l</i> = 60 с амплитудой возмущений δ ₀ = 10 ⁻⁶ см.
3	Одномерный расчёт с учётом турбулентного перемешивания: • <i>kε</i> -модель: гармоника <i>l</i> = 60, длина волны возмущения λ ₀ =16,37мкм с амплитудой <i>a</i> ₀ = 0,1637мкм на границе (<i>R</i> ₃₀ =1563мкм).
4	Одномерный расчёт с учётом турбулентного перемешивания: • <i>k</i> ε-модель: гармоника <i>l</i> = 60, длина волны возмущения λ ₀ =163,7мкм с амплитудой <i>a</i> ₀ = 10 ⁻² мкм на границе (<i>R</i> ₃₀ =1563мкм).
5	 Двумерный расчет с учётом турбулентного перемешивания при возмущении в геометрии границы (<i>R</i>₃₀=1563мкм): гармоника <i>l</i> = 60 с амплитудой возмущений δ₀ = 10⁻⁶ см <i>k</i>ε-модель: гармоника <i>l</i> = 60, длина волны возмущения λ₀=163,7мкм с амплитудой <i>a</i>₀ = 10⁻²мкм на границе (<i>R</i>₃₀=1563мкм).
6	Двумерный расчет при возмущении возмущением в лазерном источнике: • гармоника <i>l</i> = 60 с амплитудой возмущений поглощенной мишенью лазерной энергии по азимутальному углу A _l = 0,1 %
7	 Двумерный расчет с учётом турбулентного перемешивания при возмущении возмущением в лазерном источнике: гармоника <i>l</i> = 60 с амплитудой возмущений поглощенной мишенью лазерной энергии по азимутальному углу A_l = 0,1% <i>к</i>ε-модель: гармоника <i>l</i> = 60, длина волны возмущения λ₀=163,7мкм с амплитудой <i>a</i>₀ = 10⁻²мкм на границе (<i>R</i>₃₀=1563мкм).

№ варианта таблицы З	Обл. DT	<pmax> tmax</pmax>	<t<sub>i,max> t_{i,max}</t<sub>	Ndt 10 ¹⁸	Етя МДж	η _τ %	< р̂ _{тах} > г/см ³	< Т̂ _{ітах} > кэВ	N _{2D} / N _{1D}
1	1	59,0 9,87	10,9 9,74	14,7	A1 A	32,6	61,7	81,4	
1	2	77,4 9,87	5,95 9,79		41,4	30,2	60,4	74,7	-
2	1	43,9 9,85	11,0 9,74	11 /	32.0	30,2	41,8	56,1	0.78
۷	2	62,2 9,85	5,6 9,75	11.4	52,0	26,4	46,5	47	0,70
2	1	58,5 9,87	10,1 9,74	13,4	27.0	31	58,5	75,6	0.01
3	2	49,8 9,87	5,28 9,79		57,0	28,8	57,7	69,1	0,91
4	1	41,5 9,86	10,8 9,7	13,8	20.0	31,2	59,9	77,7	0.04
4	2	57,6 9,86	5,57 9,73		33,0	24,1	58,8	71,2	0,94
5	1	41,5 9,86	10,76 9,73	9,78	27.61	28,1	43,2	37,8	0.67
	2	57,6 9,86	5,59 9,73		27,01	24,1	46,3	33,9	0,07
6	1	36,5 9,85	10,7 9,68	9,2	72.1	26,2	32,6	34,5	0.62
0	2	52,8 9,85	5,2 9,73		23,1	21,3	38,6	30,6	0,03
7	1	24,5 9,72	8,85 9,54	2,2	0,075	2,2	24,2	9,2	0.15
	2	0,53 9,72	0,98 9,72			0,31	0,5	1,11	0,13

Таблица 4. Результаты расчетов однокаскадной мишени по комплексам ТИГР-ЗТ и ОМЕГА-ЗТ

Примечание к таблице 4. Обозначения < ρ_{max} >, (г/см³) и t_{max} (нс) – максимальная средняя плотность DT-топлива и момент максимального сжатия DT-топлива в расчетах без учета т.я. энерговыделения по комплексу программ ТИГР-3T; <T_{i,max}>, (кэВ) и t_{i,max} (нс) – максимальная средняя температура ионов в DT-топливе и соответствующий момент в расчетах с учетом т.я. энерговыделения по ОМЕГА-3T; N_{DT} – выход нейтронов DT-реакции; Етя– выход т.я. энергии; η_T – выгорание трития по областям 1-3; N_{2D}/N_{1D} – отношение выхода нейтронов в двумерном расчете к одномерному; курсивом выделены плотности в слоях, у которых замешаны вещества DT и аблятора.

Таблица 5. Результаты расчетов двухкаскадной мишени по комплексам ТИГР-3Т и ОМЕГА-3Т с турбулентным перешиванием

Nº	Κε	I	a_0/λ_0	<pmax> tmax</pmax>	<t<sub>i,max> t_{i,max}</t<sub>	Ndt 10 ¹⁸	Етя МДж	η _τ %	< $\hat{\rho}_{max}$ > r/cm ³	< Т _{ітах} > кэВ	Ν _{kε} / Ν _{1D}
1	-	-	-	352 9,94	3,95 9,92	1,72	4,84	49,7	169,6	60,9	-
2	+	60	0,01	532 9,95	3,33 9,92	1,11	3,13	32,1	339,5	25,5	0,64
3	+	60	0,05	334 9,91	2,92 9,8	0,59	1,65	17	239,9	15,2	0,34

Таблица 6. Результаты расчетов двухкаскадной мишени по комплексам ТИГР-3Т и ОМЕГА-3Т с гидродинамической неустойчивостью

Nº	I	A 1 %	<pre>pmax> tmax</pre>	<t<sub>i,max> t_{i,max}</t<sub>	Ndt 10 ¹⁸	Етя МДж	η _τ %	< $\hat{\rho}_{max} > \Gamma/CM^3$	< \hat{T}_{imax} > кэВ	Nke/ N _{1D}
1	-	-	352 9,94	3,95 9,92	1,72	4,84	49,7	169,6	60,9	-
2	12	1	369 9,94	3,12 9,87	1,04	2,92	29,9	313	18,7	0,60

Рисунок 3 — Распределения температур ионов, плотности, кинетической энергии турбулентности и веществ в расчетах ТИГР -3T на момент максимальной ионной температуры DT (t_{Ti max}=9,74нс). Результаты 2D-расчета с учетом турбулентного перемешиванием для варианта 5 из таблиц 3, 4 с заданием начального возмущения в виде 60-ой гармоники с амплитудой δ₀ =10⁻⁶см на границе DT и Be (*R*₃₀=1563мкм).

Рисунок 4 — Распределения температур ионов, плотности, кинетической энергии турбулентности и веществ в расчетах ОМЕГА-3Т на момент максимального сжатия DT ($t_{\rho max}$ =9,8нс). Результаты 2D-расчета с учетом турбулентного перемешиванием для варианта 5 из таблиц 3, 4 с заданием начального возмущения в виде 60-ой гармоники с амплитудой $\delta_0 = 10^{-6}$ см на границе DT и Be ($R_{30}=1563$ мкм).

Рисунок 5 — Распределения температур ионов, плотности, кинетической энергии турбулентности и веществ в расчетах ТИГР -3Т на момент максимальной ионной температуры DT (t_{Ti max}=9,54нс). Результаты 2D-расчета с учетом турбулентного перемешиванием для варианта 7 из таблиц 3, 4 с заданием начального возмущения в виде 60-ой гармоники с амплитудой δ₀ =10⁻⁶см в распределении поглощенной энергии лазерного излучения по азимутальному углу.

Рисунок 6 — Распределения температур ионов, плотности и веществ в расчетах ТИГР-3Т и ОМЕГА-3Т для 12-ой гармоники возмущений с амплитудой A₁₂ =1,0 % в распределении поглощенной энергии лазерного излучения по азимутальному углу