

Особенности процесса выброса вещества при двухволновом нагружении образца из свинца

Т.А. Адигамова, М.В. Антипов, Н.В. Васляев, А.Б. Георгиевская, <u>Д.Н. Замыслов,</u> М.О. Лебедева, К.Н. Панов, Д.А. Полшков, А.С. Соколова, Б.И. Ткаченко, Е.А. Чудаков, И.В. Юртов, А.О. Яговкин, А.П. Явтушенко

Федеральное государственное унитарное предприятие «Российский Федеральный Ядерный Центр - Всероссийский НИИ экспериментальной физики», Институт экспериментальной газодинамики и физики взрыва, Саров, Россия

Суть научной проблемы

Х

Одноволновое нагружение

Двухволновое нагружение

Особенности разрушения полированного образца под действием последовательности из двух УВ

Выход 1УВ на поверхность полированного образца, разрушение образца

СП

1yB

Выход 2УВ на поверхность, выброс вещества за счет схлопывания пузырьков

2УВ, волна компактирования

Цель работы:

исследование процессов, протекающих при разрушении и выбросе вещества в результате двухволнового нагружения образца из свинца с разной начальной шероховатостью

Объекты исследования:

процессы ударно-волнового выброса потока частиц, откольного разрушения и компактирования свинцового образца, протекающие после выхода на СП нестационарной УВ с амплитудой ~ 42 ГПа с градиентом давления за фронтом УВ dP/dx ≈ 250 ГПа/см (свинец находится в жидком состоянии) и последующим нагружением через ~ 3 мкс второй УВ (волна компактирования) с повышением амплитуды на ΔР ~ 5 ГПа.

Методы регистрации:

- импульсной рентгенографии (РУ «Страус-Р», «Аргумент-1000»)
- пьезоэлектрического датчика
- PDV с индикаторными фольгами, датчик LiF с экраном

Расчетное обоснование редакции экспериментов

Скорость СП свинцового образца от времени (1D)

Форма и поле плотностей в свинцовом образце (2D) ⁵

Редакция экспериментов

1-нагружающее устройство, 2, 4-заряд из ВВ на основе октогена Ø60 мм, 3-свинец, 5-алюминий, 6-свинцовый образец, 7-вакуумируемый зазор, 8-приемник с датчиками, 9-корпус, 10-штуцер Схема экспериментальной сборки

Редакция экспериментов

Стальная матрица

Свинцовый образец

Ra: 1.9 µm Rq: 2.4 µm Rsk: -0.091 Rkr: -0.606

Measure

Измерение поверхности с возмущениями, $A_0 = 10$ мкм, $\lambda = 160$ мкм

Стальная матрица

Свинцовый образец

Измерение полированной поверхности $A_0 \le 0.5$ мкм

1 – место установки трубопровода; 2 – пьезокварцевые датчики Ø4 мм (красный цвет); 3 – датчики PDV (зеленый цвет): стекло из кварца t = 200: №№ 1, 4, 5, 7, 9 фольга из тантала t = 250: №№ 2, 3, 6, 8, 10

Схема расположения и нумерация датчиков в приемниках

Определение и обозначение границ образца

8

Результаты метода PDV с индикаторными фольгами

9

Результаты метода пьезоэлектрического датчика

РФЯЦ-ВНИИЭФ POCATOM

10

Т₁, (Х₁)- момент, (координата) подлета фронта потока частиц, Т₂, (Х₂)- момент, (координата) подлета плотной части образца

Результаты метода импульсной рентгенографии РФЯЦ-ВНИИЭФ POCATOM РУ «Аргумент-1000» РУ «Страус-Р» Полированный образец Шероховатый образец Полированный образец Шероховатый образец 2 2 1,0 от центра от центра от центра от центра -8 мм -8 мм -8 мм -8 MM 0.8 +8 мм +8 мм +8 MM+8 MMХпсчо +8,3 MM 1,0 $ho, \Gamma/cM^3$ 0,6 $ho, {\rm r/cm}^3$ $ho, \mathrm{I/cM}^3$ Хпсчо Χπρ Хфорчо2 XIP Хфорчо2 0.2 Хфпч ХФПЧ Хфпч Хфпч 0,0+ 25 0,0+ 25 30 35 30 30 35 35 30 35 X MM X MM X MM X MM

 $ho, r/cm^3$

Х_{ПСЧО} - поверхность скомпактированной части образца (1), Х_{ФОРЧО2} - фронт откольно-разрушенной части образца, Х_{ПР} – граница просвечивания для РУ «Аргумент-1000», Х_{ФПЧ} - фронт потока частиц (2)

Сравнение полученных результатов

Сравнение полученных результатов

Х_{ПСЧО} – поверхность скомпактированной части образца, Х_{ФОРЧО2} - фронт откольно-разрушенной части образца, Х_{ПР} – граница просвечивания для РУ "Аргумент-1000", Х_{ФПЧ} - фронт потока частиц

образцы	Пьезо, мг/см²		Рентгенография, мг/см ²			PDV, мг/см²
	ρ ~ 0,15 г/см ³	ρ ~ 0,4 г/см ³	Х _{ПР,} ρ ~ 0,3 г/см ³	Х _{фОРЧО2,} ρ ~ 1,2 г/см ³	Х _{псчо,} ρ ~ 4 г/см ³	*р ~ 1 г/см ³
полированный	≈ 10±5		≈ 25±5	≈ 100±5	≈ 235±20	≈ 70±5
шероховатый		≈ 20±5	≈ 30±5	≈ 115±5	≈ 290±20	≈ 100±5

* - для PDV распределение плотности не является прямыми "первичными" данными, поэтому масса вещества в потоке частиц определяется по времени подлета на индикаторную фольгу плотной части образца

Заключение

- Предложена и апробирована редакция экспериментов для исследования процесса ударно-волнового выброса потока частиц, в условиях откольного разрушения и компактирования образцов, находящихся в жидкой фазе
- Впервые в одном опыте реализовано ранжирование чувствительности рентгенографического метода для регистрации плотности всего диспергированного образца в диапазоне $\rho \sim (0,001 \div 10) c/cM^3$
- Экспериментальные зависимости, полученные разными методами, не противоречит друг другу. Получены значения удельных масс в зарегистрированном диапазоне плотностей:

Полированный образец: $\rho \sim (0,006 \div 0,3) \ c/cm^3$, **m** \approx (25±5) мг/см² $\rho \sim (0,006 \div 1,2)$ ε/cm³, m \approx (100±5) мг/см²

Шероховатый образец: $\rho \sim (0,006 \div 0,3) \ c/cm^3$, $\mathbf{m} \approx (30\pm 5) \ \mathbf{mr/cm^2}$ $\rho \sim (0,006 \div 1,2) \ c/cm^3$, m $\approx (115\pm5) \ mr/cm^2$

ОСНОВНОЙ ВЫВОД ПО РЕЗУЛЬТАТАМ ИССЛЕДОВАНИЙ:

Выброшенная масса вещества в потоке частиц, не имеет выраженной зависимости от начальной шероховатости поверхности в условиях двухволнового нагружуения образца из свинца и составляет (120 мг/см²), что значительно больше, чем при одноволновом нагружении (30 мг/см²) 14

Спасибо за внимание

Т.А. Адигамова, М.В. Антипов, Н.В. Васляев, А.Б. Георгиевская, <u>Д.Н. Замыслов</u>, М.О. Лебедева, К.Н. Панов, Д.А. Полшков, А.С. Соколова, Б.И. Ткаченко, Е.А. Чудаков, И.В. Юртов, А.О. Яговкин, А.П. Явтушенко

Федеральное государственное унитарное предприятие «Российский Федеральный Ядерный Центр - Всероссийский НИИ экспериментальной физики», Институт экспериментальной газодинамики и физики взрыва, Саров, Россия