

Павленко Александр Валериевич, А.В. Бочков, А.Ю. Гармашев, Г.Н. Рыкованов

Современные методы

газодинамических исследований

Забабахинские Научные Чтения, 29 мая – 02 июня, 2023

avpavlenko@vniitf.ru

Моделирование взрывных и ударно-волновых процессов

Изменение скорости деформации

Модели должны учитывать:

Протекание полиморфных превращений с учетом неравновесности

□ Изменение прочностных свойств в условиях высокоскоростного деформирования при ударно-волновом нагружении и сжатии системы

□ Зарождение и развитие разрушения с учетом изменения скорости деформации, температуры и происходящих в материале фазовых превращений

Залечивание образовавшихся повреждений

Взрывные нагружающие устройства

Плосковолновые

Баллистические нагружающие установки, методология работ

Нагружение – легкогазовые пушки калибра 44мм, диагностика – интерферометрия VISAR, PDV

Структура - световые микроскопы, Neophot-21 и др; Микроструктура, фазовый и элементный составы в сканирующем электронном микроскопе Quanta-200; в просвечивающем трансмиссионном электронном микроскопе JEM-200CX; Рентгеновский структурный анализ (CuKα); Микротвердость - ПМТ-3 при нагрузке 50 г;

Алмазные наковальни- ячейка типа Boehler-Almax. Излучение – МоК α λ = 0,711 Å. Передающая среда – NaCl. (Δ P = ±0,3 ГПа) ФЯЦ-ВНИИТФ

Немного истории. Лазерные интерферометрические методы.

Интерферометр Майкельсона	1965, Sandia	
Интерферометры Фабри-Перо	1968 -LLNL, 1974 - CEA, 1983 — ВНИИЭФ; 1999 - ВНИИТФ 2003 - LLNL — 15 каналов , 2008 - AWE — 6 каналов	
VISAR	1972 — L.Barker, Sandia; 1988 — Г.И.Канель, ИПХФ; 1990 — LANL, 36-Point VISAR System Trailer; 2006 — ВНИИТФ, ВНИИЭФ	15-c
PDV — HET-V (ЛГМ)	1988 – В.Т. Neyer 1999 – Oliver Strand, LLNL – 1 канал, 2004 – 4 канала, 2006 (LLNL) – 32 канала, 2012 – 96 каналов ВНИИТФ – 2011 -1 канал, 2012 – 4 канала, 2015 – 108 каналов	

15-channel Fabry-Perot, NTS U1a /circa 2003

Немного истории – метод оптического рычага

Z=0

3

1.4

1.2

1.0

0.8

0.4

0.0

13

h, MM

Owen J.D., Davies R.M. // Nature. 1949. V. 164. P. 752.
 Allen W.A., McClary C.L. // Rev. Sci. Instrum. 1953. V. 24. P. 165.
 Fowles G.R. // J. Appl. Phys. 1961. V. 32. № 8. P. 1475.

В.И. Таржанов. ПТЭ, 2022, № 1, С. 106–119

Z=0

Е.А. Козлов, В.И. Таржанов, И.В. Теличко, Д.Г. Панкратов. Сдвиговая и откольная прочность закаленной стали ЗОХГСА при взрывном нагружении в области протекания твердофазного превращения. Деформация и разрушение материалов, 2012, № 8, с. 32-38

h. MM

ФЯЦ-ВНИИТФ

Метод оптического рычага. Церий.

Двукратное нагружение церия: нормальная детонация ТГ46 через воздушный зазор 5 мм + слойка – медь 10,0 мм + ацетон 7,0 мм + медь 7,0 мм; толщина ВВ: слева – 10 мм, справа – 30 мм

Скорость, км/с *x* = 0,90 MM

0.2

3

Е.А. Козлов, В.И. Таржанов, И.В. Теличко, Д.Г. Панкратов, Д.П. Кучко, М.А. Ральников, и др. 3HY – 2014

1-1 упругий и фазовый предвестники 2-2 основная пластическая волна 3-3 вторая волна в α-фазе

- 4-4 вторая волна в у-фазе
- 5-5 повторное нагружение

x = 5,05 MM

Лазерные измерители скорости с интерферометром Фабри-Перо

 $W(t) = \frac{c\lambda}{4h} \left(N + \frac{R_i^2(t) - R_i^2}{R_{i+1}^2 - R_i^2} \right)$

15-channel Fabry-Perot, NTS U1a /circa 2003

Е.А. Козлов, В.И. Таржанов... Разгон ударника, временная развертка

2 – канальный комплекс ВНИИТФ (ВНИИА)

А.В. Федоров... Профиль ударной волны в стали 12Х18Н10Т.

Лазерные измерители скорости с интерферометром Фабри-Перо

РФЯЦ-ВНИИТФ. Лазер видимого диапазона с длительностью импульса более 100 мкс для комплексов ФП / VISAR

531,7 нм

2 - канальный комплекс ВНИИТФ (ВНИИА)

Волоконный вывод излучения; Импульсная мощность: более 100 Вт

Длительность импульса: по уровню 0,5 более 150 мкс по уровню 0,9 более 100 мкс

Применение

- Интерферометрические измерения
- Измерения скорости поверхности в быстропротекающих, ударно-волновых процессах
- Виброметрия
- Лазерная спектроскопия

Лазерные измерители скорости VISAR

FIGURE 5. Approximate number of VISARs worldwide, with dates of some VISAR developments.

Barker Lynn M. *The Development of the VISAR, and Its Use in Shock Compression Science*. In Proc. 11th Shock Compression of Condensed Matter, c.11-17, 1999.

Barker Lynn M. *The Accuracy of VISAR Instrumentation*. In Proc. 10th SCCM, 1997 –

«важно помнить, что точность измерения скорости интерферометрами VISAR от 0,5 % до 1 % достигается без каких либо видимых усилий...» (при наносекундном временном разрешении).

РФЯЦ-ВНИИТФ: интерферометры VISAR

Патент №2638582 Российская Федерация МПК G01B 9/02 (2006.01) «Двухканальная интерферометрическая система для исследования ударно-волновых процессов»

ФЯЦ-ВНИИТФ

VISAR. Обработка, анализ профилей волн напряжений

Забабахин Е.И.

Некоторые вопросы газодинамики взрыва. Снежинск, 1997.

Канель Г.И., Фортов В.Е., Разоренов С.В., Уткин А.В. Ударно-волновые явления в конденсированных средах. Москва, М: Янус-К, 1996.

Канель Г.И.

Искажение волновых профилей при отколе в упругопластическом теле. ПМТФ, том 42, №2, с. 194-198, 2001.

РФЯЦ-ВНИИТФ

11

MPDV Prototype 32-Probe System 1x, 2x, 4x, 8x or 16x multiplexing (circa August 2011)

10

8

Время, мкс

12

14

4

2

Комплексы PDV РФЯЦ-ВНИИТФ с временным и частотновременным уплотнением

Лазерные измерители скорости PDV / HET-V

РФЯЦ-ВНИИТФ. Эрбиевые оптоволоконные лазеры для комплексов PDV / MPDV

Type of the second seco

Низкий уровень спектральных шумов

ФЯЦ-ВНИИТФ

Стабильность отстройки частоты излучения в двух каналах менее ±15МГц за 17 часов

Ширина линии излучения (по Лоренциану) менее 5 кГц

Применение

- Интерферометрические измерения
- Измерения скорости поверхности в быстропротекающих, ударно-волновых процессах
- Виброметрия
- Лазерная спектроскопия
- Оптическая связь

Преимущества

- Статус отечественной разработки. Защищены патентами № 2554337, №2664758
- Адаптированы к повышенным внешним воздействующим факторам

Гибридные лазерные измерители скорости PDV / HET-V

A.V. Pavlenko, S.S. Mokrushin, A.A. Tyaktev, and N.B. Anikin. A hybrid interferometric system for velocity measurements in shock-wave experiments / Rev. Sci. Instrum. **92**, 015104 (2021); <u>https://doi.org/10.1063/5.0029815</u>

РФЯЦ-ВНИИТФ

росатом

Реализованы программные алгоритмы преобразований сигналов PDV

- Скользящее оконное преобразование Фурье. Спектрограмма наглядно демонстрирует спектральную плотность сигнала, разбитого на временные отрезки равные ширине окна преобразования.
- Преобразование Гильберта позволяет находить квадратурное дополнение к экспериментальному сигналу, после чего определяется фаза сигнала. Частота сигнала находится как производная фазы по времени.
- **Прямой метод обработки** Первый способ нахождение экстремальных точек, следовательно период или частоту биений. Второй способ прямой обработки сигнала нахождение фазы как арксинуса приведенного к гармоническому виду сигнала, а затем и его частоту как производную фазы. Приведение сигнала к гармоническому виду осуществляется методом эмпирической декомпозиции и нахождением огибающей сигнала.
- Метод локальной синусоидальной аппроксимации в каждой точке сигнала или с заданным шагом, он позволяет определить непосредственно частоту сигнала на заданном отрезке (окне). Аппроксимация проводится с применением амплитудной огибающей на отрезке сигнала в виде Гауссовой кривой.
- Оригинальный метод обработки PDV сигналов метод квадратурного дополнения*, основанный на применении к сигналу двух преобразований интегральной свёртки по приближённой фазе сигнала в качестве переменной.

Лазерные измерители скорости PDV / НЕТ-V. Методы обработки*

*Rev. Sci. Instrum. 92. 075104 (2021); doi:10.1063/5.0044154; 3HY-2021; XHY-2022

РФЯЦ-ВНИИТФ РОСАТОМ

Лазерные измерители скорости PDV / НЕТ-V. Методы обработки

f. MHz

2.5 3 3.5 4 4.5 5

0.05

0.05

0.05

0.04

100

800

f, MHz

2.5

10 0.05

2

t. us

(a)

2.65 2.66 2.67 2.68 2.69

2.65 2.66 2.67 2.68 2.69

2000

150

100

A hybrid interferometric system for velocity measurements in shock-wave experiments

Ouadrature complement method for time-resolved signal frequency reconstruction

f. MHz

2.5 3

700 (b)

600

500

400

20/

100

3.5 4 4.5 5

t. us

A Vimax V V(min)

Cite as: Rev. Sci. Instrum. 92. 075104 (2021); doi: 10.1063/5.0044154 Submitted: 14 January 2021 • Accepted: 21 June 2021 • Published Online: 12 July 2021

f. MHz

1000

2.5 3

2.7

1, 115

3.5 4 4.5 - 5

t. µs

FIG. 9. Experiment No. 1. Spectrograms (48) (Hamming window, 1024 points) for the (a) original signal, (b) signal after F¹₂-transform, and (c) signal after F¹₂-transform

2.71 2.72 2.73

.20

FIG. 12. Experiment No. 2: (a) experimental signal, S₀, and the sum of harmonics, S₁¹ + S₁¹; (b) velocity profile, V, and the points that correspond to extreme of S₁¹. (c) Spectrogram (Hamming window, 1024 points +41 ns) of S₂ and velocity profile V (curve). (d) Spectrogram (Hamming window, 256 points +10 ns) of S₂ and velocity profile V (curve)

1.5

Совмещение измерений VISAR - ФП - PDV / HET-V

test 1/HET-V/ch1 test 1/HET-V/ch3 2,6 $p_{\rm s} = 32,2\pm0,6$ ГПа, x10 test 1/Fabry-Perot/ch2 $u_{\rm s} = 2,40\pm0,05$ км/с. test 2/HET-V/ch1 ----- test 2/HET-V/ch3 2,4 test 2/Fabrv-Perot/ch1 -test 2/VISAR/ch1 - test 2/VISAR/ch2 ---- test 3/HET-V/ch1 2,2 $p_J = 26,5 \pm 0,6$ ГПа, 9 test 3/HET-V/ch3 10 test 4/Fabry-Perot/ch1 test 4/Fabry-Perot/ch2 $u_I = 1,99 \pm 0,04$ км/с. Скорость, км/с 2 test 4/VISAR 1,8 $p_{s} = 37,85$ ГПа, 1,6 k=1.401 1,4 $p_{s} = 41,07 \ \Gamma \Pi a$, 1,2 k=1,509 $p_{s} = 47,7 \ \Gamma \Pi a$, 0,8 k=1,759 0,5 1,5 2,5 2 0 Время, мкс

> Е.А. Козлов, В.И. Таржанов, И.В. Теличко, А.В. Павленко, С.Н. Малюгина, и др. *Структура зоны реакции детонирующего мелкозернистого ТАТБ*. Эксперимент. ЗНЧ, Снежинск, 2012.; Структура зоны реакции ТАТБ при нормальной и пересжатой детонации. ХНЧ, Саров, 2013.

ФЯЦ-ВНИИТФ

Лазерные измерители скорости чирпированным импульсом

Длительность греющего лазерного импульса, пс	0,9
Энергия греющего лазерного импульса, Дж	10,6 - 12,8
Медные мишени, мкм	5; 10
Длительность зондирующего лазерного импульса, пс	110
Временное разрешение метода, пс	10
Пространственное разрешение в канале ω ₀ , мкм	10,7
Пространственное разрешение в канале 2ω ₀ , мкм	6,9

<u>Е.С. Борисов</u>, Д.С. Гаврилов, Н.Ю. Титаренко. *ЭКСПЕРИМЕНТАЛЬНЫЕ* ИССЛЕДОВАНИЯ СКОРОСТИ РАЗЛЕТА ВЕЩЕСТВА ПРИ ИЗОХОРИЧЕСКОМ НАГРЕВЕ УЛЬТРАКОРОТКИМ ЛАЗЕРНЫМ ИМПУЛЬСОМ, ЗНЧ-2023

Эксперименты с мишенями 10 мкм

Параметры эксперимента	Значение		
Энергия лазерного импульса на медной мишени, Дж	12,4		
Интенсивность лазерного импульса на мишени, Вт/см ²	2·10 ¹⁸		

Лазерные измерители скорости чирпированным импульсом

максимальная скорость поверхности критической плотности

65 км/с для 1054 нм и 43 км/с для 527 нм

Параметры эксперимента	Значение
Энергия лазерного импульса на медной мишени, Дж	12,4
Интенсивность лазерного импульса на мишени, Вт/см ²	2·10 ¹⁸

Профили волн напряжений, циркониевый сплав Э635

Исходное состояние

V = 0,22 KM/c; T = 210 °C;

<u>V = 0,3 км/с;</u>

Профили волн напряжений, циркониевый сплав Э125

Цирконий, циркониевые сплавы, затухание упругого предвестника

G.E. Duvall. In: Stress Waves in Inelastic Solids, edited by H. Kolsky and W. Prager, 1964
Ahrens T.J. and Duvall G.E. J. Geophys. Res., 71(18), 4349-4360 (1966).

J. R. Asay, G. R. Fowles, and Y. Gupta, J. Appl. Phys. 43, 744 (1972).
Г.В. Гаркушин, Г.И. Канель, С.В. Разоренов. ФТТ, 2012. Т. 54, № 5.

Цирконий, циркониевые сплавы, откольная прочность

Цирконий Э100, циркониевый сплав Э125

Сплав

Цирконий, циркониевые сплавы, фазовые превращения

 Zr (TMO) α→ω: 1 мм - 8,1 ГПа; 2 мм - 7,7 ГПа; 6 мм - 7,4 ГПа. Э110 - 8,4 ГПа;

 Сплавы:
 Э110 α→ω: 0,46 мм - 11,2 ГПа; 4 мм - 10,6 ГПа;

 Э635 α→ω:
 4 мм - 14,5 ГПа;
 Э125 α→ω: 4 мм - 10,6 ГПа.

Титан ВТ1-00, ВТ1-0, титановые сплавы ВТ8, ВТ20, ОТ4

Скорость свободной поверхности, км/с

h 20

0.05

Затухание упругих предвестников

А.В.Павленко, А.В.Добромыслов, Н.И.Талуц, и др. Ударно-волновсвойства и деформационная структура технически чистого титана. ФММ, том 122, №8, 2021

Механизмы деформирования:

Высокоскоростная пластическая деформация BT1-0 осуществляется скольжением (снизу) и двойникованием (сверху), скольжение в основном протекает в базисной плоскости дислокациями типа b = a/2 <1120>

BT20

OT4

Скольжение – основной механизм пластической деформации; не наблюдается микродвойников и полос локализации деформации; Откольные трещины проходят в нескольких уровнях, преимущественно по границам первичной α-фазы. При нагреве болльшоре количество полос локализации деформации, приобретающих анизотропную форму.

Вязкое разрушение; локализация деформации, добавляется сдвиговой характер разрушения. При повышении температуры большое количество полос локализации деформации, в том числе между откольными трещинами; прослойки β-фазы имеют зубчатый вид, что свидетельствует о массопереносе материала в процессе деформации

Реакторные стали – Х16Н15М3Т1

Состав <u>X16H15M3T1</u> в % по массе:

₂₄ Cr	₂₈ Ni	42Mo	₂₂ Ti	₁₂ C
15.9	15	2.5	1.02	0.03

Физико-механические свойства:

- плотность 7.95 г/см³
- продольная скорость звука $c_l = 5731 \pm 10$ м/с
- поперечная скорость звука $c_s = 3037 \pm 5$ м/с
- объемная скорость звука $c_b = 4,53$ км/с

Сталь X16H15M3T1 – аустенитная сталь, в закаленном от 1100°С состоянии ее структура представляет собой полиэдрические зерна аустенита размером от 20 до 40 мкм. Зерна имеют стабильную ГЦК решетку.

T= -90, 20°C большое количество дислокаций и тонких двойников деформации

T= 500°C двойники практически не образуются, зарождение и перемещение дислокаций

8245029

03[011]

ĕ

Откольна

Реакторные стали - Х13В2

39Y

0,33

0,08 12,1 2,15 0,27 0,43 0,01 0,19 0,65

Физико-механические свойства:

- плотность - 7.65 г/см³

12C

- продольная скорость звука $c_l = 5972 \pm 10$ м/с
- поперечная скорость звука $c_s = 3140 \pm 5$ м/с
- рассчитаная объемная скорость звука $c_b = 4,57$ км/с

Структура стали X13B2 состоит из зерен феррита размером 100-150 мкм, имеющих криволинейные границы (наличие ферритных зерен с ОЦК решеткой подтверждено микродифракцией электронов). Внутри зерен и по их границам располагаются дисперсные частицы вторых фаз.

T= 20°C повышенная плотность дислокаций ячеистосетчатой структуры

T= 500°C двойники практически не образуются, зарождение и перемещение дислокаций, двойное измельчение ячеек, сохраняются карбиды

Реакторные стали – 12Х18Н10Т

Таблица д элимический состав нержавеющей стали 12Х18Н10Т, импортных аналогое

Особенности реологии, «аномальное» поведение материалов

Аномальное термическое упрочнение

Фазовые превращения, сталь 30ХГСА

YBP

1.4 1.6

2.5

2

Сдвиговая прочность Y(ɛ,dɛ/dt,T,P,ξ)

Ma14T1

РФЯЦ-ВНИИТФ РОСАТОМ

Разрушение и залечивание повреждений σ_{*}(dε/dt,Τ,ξ)

5

Моделирование взрывных и ударно-волновых процессов

Влияние прочности и фазовых превращений на характеристики сжатия

Материал	Г Э	Іереданная нергия, кДж		Конечный радиус, мм		
	Эксп	ерим.	Расчет	Эксперимент		Расчет
Cu	100	0.98	0.98	32.91	1.0285	1.030
12X18H10T	102	1.00	1.00	32.46	1.0144	1.021
Fe(CT3)	115	1.14	1.14	32.34	1.0064	1.014
30ХГСА	129	1.27	1.29	32.26	1.0081	1.007

Изменение скорости деформации

Модели должны учитывать:

Протекание полиморфных превращений с учетом неравновесности

□ Изменение прочностных свойств в условиях высокоскоростного деформирования при ударно-волновом нагружении и сжатии системы

□ Зарождение и развитие разрушения с учетом изменения скорости деформации, температуры и происходящих в материале фазовых превращений

Залечивание образовавшихся повреждений

- В РФЯЦ-ВНИИТФ созданы и эксплуатируются все типы лазерных интерферометрических комплексов, предназначенных для диагностики ударно-волновых процессов в газодинамических исследованиях.
- С использованием комплексов VISAR и PDV/HET-V исследуются динамические свойства конструкционных материалов в диапазоне давлений до нескольких мегабар, в диапазоне температур от минус 180 до 1000°С, диапазоне скоростей деформирования от 10² до 10⁸ с⁻¹. На основе новой экспериментальной информации уточняются физико-математические модели, предназначенные для прогнозирования поведения материалов. По результатам численного моделирования всей совокупности экспериментов к настоящему времени выполнены калибровки усовершенствованной модели разрушения ряда материалов, сделаны выводы о характеристиках их фазовых превращений.
- В РФЯЦ-ВНИИТФ (<u>dep5@vniitf.ru</u>) осуществляется постановка на серийное производство лазеров для интерферометрических комплексов PDV/MPDV, завершается разработка лазера для комплексов VISAR.

Авторы доклада выражают благодарность коллегам, оказавшим неоценимый вклад в выполненные работы:

А.В. Бочков, Г.С. Софиенко, А.В. Загидулин, И.В. Касьянов,

- А.В. Петровцев, В.В. Дремов, Д.М. Шалковский, В.Н. Ногин,
- В.И. Таржанов, Е.Б. Смирнов, Д.П. Кучко, А.Ю. Гармашев,
- С.С. Мокрушин, Д.Н.Казаков, Д.А. Беляев, С.Н. Малюгина, Н.Б. Аникин,
- Е.С. Борисов, Д.С. Гаврилов, Н.Б. Титаренко, А.Г. Какшин, А.В. Потапов,
- Н.И. Талуц, А.В. Добромыслов, С.В. Разоренов, А.В. Уткин, Д.А. Беляев,
- А.Е. Шестаков, А.В. Седов